全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 初三网 > 初中数学 > 数学知识点 > 正文

为什么有界不一定收敛

2024-01-12 14:32:05文/勾子木

有界不一定收敛是指此数列或函数存在上下限,但没有一种趋势是趋向于某一个确定的数,就像正弦函数一样,虽然有正负1给它作为上下限,但随着x的变化,函数值没有趋向于一个确定的1一样。收敛一定有界指的是此数列或函数存在一个趋势,这个趋势的极限是一个确定的值,就像反比例函数一样。

为什么有界不一定收敛

收敛数列是什么意思

收敛数列,数学名词,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。如果数列Xn收敛,每个收敛的数列只有一个极限。

定义:设有数列Xn,若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。

查看更多【数学知识点】内容