全国

    当前位置:

  • 热门地区:
  • 选择地区:
  • ×
当前位置: 首页 > 高中 > 高中备考 > 正文

高中数学三角函数 有哪些公式

2022-12-13 10:30:01文/周传杰

三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实际上就是解最简单的三角不等式,通常可用三角函数的图像或三角函数线来求解,注意数形结合思想的应用,如何运用三角函数的图像解决问题能够帮助对数形结合思想的`掌握。

高中数学三角函数 有哪些公式

锐角三角函数公式

sinα=∠α的对边/斜边

cosα=∠α的邻边/斜边

tanα=∠α的对边/∠α的邻边

cotα=∠α的邻边/∠α的对边

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2—SinA^2=1—2SinA^2=2CosA^2—1

tan2A=(2tanA)/(1—tanA^2)

(注:SinA^2是sinA的平方sin2(A))

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3—α)

cos3α=4cosα·cos(π/3+α)cos(π/3—α)

tan3a=tana·tan(π/3+a)·tan(π/3—a)

三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

辅助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α—t),tant=A/B降幂公式

sin^2(α)=(1—cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1—cos(2α))/(1+cos(2α))

推导公式

tanα+cotα=2/sin2α

tanα—cotα=—2cot2α

1+cos2α=2cos^2α

1—cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1—sin2a)+(1—2sin2a)sina

=3sina—4sin3a

cos3a

=cos(2a+a)

=cos2acosa—sin2asina

=(2cos2a—1)cosa—2(1—sin2a)cosa

=4cos3a—3cosa

sin3a=3sina—4sin3a

=4sina(3/4—sin2a)

=4sina[(√3/2)2—sin2a]

=4sina(sin260°—sin2a)

=4sina(sin60°+sina)(sin60°—sina)

=4sina*2sin[(60+a)/2]cos[(60°—a)/2]*2sin[(60°—a)/2]cos[(60°—a)/2]

=4sinasin(60°+a)sin(60°—a)

cos3a=4cos3a—3cosa

=4cosa(cos2a—3/4)

=4cosa[cos2a—(√3/2)2]

=4cosa(cos2a—cos230°)

=4cosa(cosa+cos30°)(cosa—cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a—30°)/2]*{—2sin[(a+30°)/2]sin[(a—30°)/2]}

=—4cosasin(a+30°)sin(a—30°)

=—4cosasin[90°—(60°—a)]sin[—90°+(60°+a)]

=—4cosacos(60°—a)[—cos(60°+a)]

=4cosacos(60°—a)cos(60°+a)

上述两式相比可得

tan3a=tanatan(60°—a)tan(60°+a)

查看更多【高中备考】内容